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Abstract 
Conventional ways of examining urban spatial structure in cities through locational 
patterns and density profiles have focused mainly on aggregate activity data such as 
the distribution of population and employment. With the appearance of large data bases 
dealing with building form and geometry, it is now possible to explore such patterns in 
terms of building size, impressing and extending the more physicalist tradition 
established in biology where scaling and allometry represent the signatures of growth 
and morphology, so that we can detect the underlying structure of cities as patterns of 
urban self-organization.  

Scaling relationships in cities are important because they inform us about the way city 
size and location are constrained by geometry. Geometrical constraints also determine 
shape and these in turn relate to issues such as energy use, density of occupation, and 
circulation in buildings and streets. We start with a rather general and very simple 
approach to the density of population and buildings in cities which implies scaling, and 
then we develop two features of density, first focusing on the distributions of buildings 
by size relating directly to density, and second, on the relationships between different 
geometric characteristics of buildings based on the study of their allometry.  

After we have sketched the key relationships, we examine the distribution of buildings in 
terms of their volume, height, and plot using rank-size relations. We also look at 
allometric relations between volume, height, and these same areas. We then selectively 
examine some of the rank-size and allometric relations for each of five different land 
uses and show that there are consistent differences in scaling which relate to the 
functions of these different land uses. One use of these relations is in estimating the 
distribution of energies by building size. There are also implications for the degree of 
heterogeneity and diversity characteristic of organically growing cities that should be 
maintained in planned cities. Finally we sketch how we might examine other geometric 
relations, in particular street systems, thus tying this work back to scaling relations 
which link physical to socio-economic attributes. 

Introduction 
Although the predominant approach to cities is through an 
examination of their physical characteristics, it is still surprising that 
there has been so little systematic study of the effects of geometry in 
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their form and function. The field of urban morphology is small and 
fairly descriptive despite the rather patchy development of more 
formalized theory such as that based on space syntax, fractal 
geometry, shape grammars and network science. Geometry 
constrains what is possible in cities in terms of their shape and size 
and the configuration and distribution of their internal elements, 
whether these be measured in terms of populations or buildings. It is 
important to have a comprehensive theory about how geometry 
influences urban distributions so that we can explore how shape 
changes with size for this is crucial to the planning of future forms and 
it is a crucial determinant of the way cities perform. Ideas about 
sustainability and the compact city which change the way we might 
move around cities are critically tied up with such questions of 
geometry. 

In the development of urban theory, there are two quite different 
approaches to the question of geometry. First, it might be argued that 
the effect of space should be filtered out from our theory so that we 
can observe the effects of spatial and locational decision-making 
without the hindrance of geometric constraints. This approach 
assumes that such separation of form from function is possible, with 
form being relegated to the background and explanation in terms of 
function taking pride of place. Second, the much more dominant 
approach is based on the notion that space and geometry are intrinsic 
to theory development and that form cannot be disembodied from 
function. The first approach is not particularly common in comparison 
with the second although the great disadvantage of the second is that 
all the emphasis goes on form and little on function. For example, the 
focus turns entirely to spatial variation and spatial autocorrelation 
become key, with the consequent problem that non-spatial or a-spatial 
functions have little contribution to theory. In some instances, such 
explanation in purely spatial terms can be spurious. 

In this paper, we are concerned to develop the second of these 
approaches but we will embrace our concern for the physical 
distribution of space in terms of building in large cities in the wider 
context of what we know about urban land use and their economic 
underpinnings. What we will do here is examine the distribution of the 
physical elements making up large cities which we will measure in the 
form of building blocks, first in terms of their size distributions. We 
need to know the form of their distribution which we suspect like many 
urban distribution functions is composed of many small elements and 
few big elements. We will measure these distributions using rank-size 
relations. We will do this for various geometric characteristics of the 
elements in question, namely dimensions such as length, area and 
volume that define their geometric form. Having examined these 
distributions, we will relate their geometric attributes to one another in 
the quest to measure their interdependencies on the assumption that 
as the size of the element in question increases, their geometric 
properties will scale within one another in different ways. This will 
engage us in developing their allometry. 

The critical hypothesis relating to these geometric relations is that as 
the size of the typical elements changes, these relations may well 
depart from the standard geometric relations that characterize length, 
area, and volume. The allometric hypothesis suggests that there are 
critical ratios between geometric attributes that are fixed by the 
functioning of the element in questions and if the element changes in 
size, these ratios need to remain fixed for the element to still function. 
Often the geometry has to change if these ratios are fixed and D’Arcy 
Wentworth Thompson (1917, 1971) was amongst the first to 
demonstrate this. A good example relates to natural light penetrating 
buildings. As natural light depends on the surface area of a building, 
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then to preserve a given ratio of natural light for the volume of the 
building, then the shape of the building has to change if the building is 
to be increased in size. In short, the surface area does not change at 
the same rate as volume and if the ratio has to be fixed to make the 
building function, then the volume has to change and this implies a 
different shape as the building increases in size. 

We will not develop the detail of this argument much further here but 
our results are central to this notion. As yet there is no well worked out 
theory of urban allometry; indeed there is no complete theory of size 
in biological systems from whence these ideas arise (Bonner, 2006) 
although there are various theories in the making (West, Brown and 
Enquist, 1999). In fact many of the ideas in the emerging field of urban 
morphology support different aspects of this more general theory of 
size, shape and scale and our intention here is to simply put another 
piece in place in this much larger jigsaw (Kuhnert, Helbing, and West, 
2006). To this end, having sketched the formal structure of scaling 
and allometry in urban geometry in the next two sections, we will first 
apply these ideas to a data base of building for Greater London, 
generating rank-size distributions for all buildings and their geometric 
properties and then examining the allometric relationships between 
these properties. We will then extend this to different land uses and 
conclude with some speculations on how street system geometries 
which tie buildings together in the city, also scale. This links our work 
to developments in space syntax that explore the scaling properties of 
street systems (Hillier, Turner, Yang and Tae-Park, 2007; Carvalho 
and Penn, 2004) Our ultimate quest is to use these various relations 
in examining a broad range of urban questions from energy outputs in 
buildings to the heterogeneity in land use and building types which 
has implications for sustainable communities and future city design. 

Density, Size and Scale in Large Cities 

The typical profile of population and other land use densities in a large 
industrial city is based on a relation between the density )(dρ  and 
the radial distance d  from the central business district to any other 
place. Many different urban economic theories suggest that this 
density declines inversely with distance from the centre and this is 
borne out from wide empirical study beginning with Clark (1951). A 
typical function of density is based on an inverse power law 

αρ −dd ~)(  (1) 

where α  is a parameter controlling the effect of distance. When 
2=α , this is consistent with the inverse square law while the 

assumption that the relationship is a power law, implies scaling and 
connects this relation to those associated with space-filling which 
underpin fractal geometry (Batty and Longley, 1994). In fact power 
laws of this kind approximate exponential laws of the form 

)exp(~)( dd λρ −  (and vice versa) and while these have proved 
more popular in urban economics as they emerge easily from various 
maximization frameworks, the assumption of a power law is more 
tenable for the idea of the fractal city (Batty, 2005).  

There is another way of examining this density relationship. First we 
assume that the city is one-dimensional, stretched out along a line 
from the CBD, and in such a case if we assume the density in 
question is associated with each unit distance band, then what we 
have is an ordered set of densities where the first distance band 
contains the largest density, the second the second largest and so on. 
If a distance band defines the unit object, then this set of units is 
naturally ordered from the largest to the smallest as distance from the 
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CBD increases. We show this for the function 21000)( −= ddρ  in 
Figure 1 in continuous terms and as a histogram of objects for each 
unit distance band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The natural order of the density objects from the CBD – let us assume 
they are single zones still – is equivalent to the rank-order of these 
objects because of the way the function has been applied. The rank-
order is a size distribution and thus we see here that we have, 
unwittingly perhaps, constructed a rank-size distribution directly. Of 
course we are making the assumption that each distance band is a 
single object and the city is an idealized one-dimensional transect 
from the CBD to its periphery. If we spin the transect around its axis 
(at the CBD), we produce the familiar cone of densities with the 
number of objects from the CBD increasing as the square of the 
distance. However when we examine the number of objects in each 
distance band, then these simply increase at the same rate as across 
the transect. The rank-order, albeit with more objects in each band, 
still holds. This is equivalent to integrating the function in (1) with 
respect to its radial angle performing a sweep around each band or 
annulus. In practice, we would show this by discretizing each annulus 
into grid squares of equal size. 

The best way to show this rank order is to first reset the notation in (1) 
from distance to rank – that is αρ −== rKdr )(  where r is now the 
rank of the object in the set and K is a constant of proportionality, and 
then transform the function into the usual linear one using logarithms; 
that is 

[ ] rKr loglog)(log αρ −=  (2) 

We need to say something about the parameter value α  which we 
have assumed is 2. The pure rank-size rule assumes that this 
parameter is equal to 1 although the conventional wisdom tends to 
reflect the empirical evidence in city-size distributions where the 
parameter is usually greater than 1. In fact it is most unlikely that the 
density parameter in (1) would be 2 which was taken from the inverse 
square law and what evidence there is for fitting power laws to 
densities (see Batty and Longley, 1994) suggests that this value is 
between 1 and 2. There are implications here for space-filling in one-
dimensional and two-dimensional space but these lie beyond our 

Figure 1: 

Population density in a one-
dimensional city 
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discussion here. The second issue involves fact that we have 
assumed that each zone is an object and that (2) is a distribution of 
zone sizes. As each unit distance band is the same in terms of size 
when it is discretely transformed as a set of grid cells, then population 
density )(rρ  is the same as population )(rP . In this sense, we are 
dealing with population size when we carefully control to ensure equal 
zone size. Moreover, we might also make the assumption that the 
population )(rP in each grid cell is contained in a number of buildings 
where each building is of the same size. Therefore the number of 
buildings in each cell would covary with the population and therefore 
we might expect the rank-size relation to scale the same way for 
buildings as for population. 

However it is more likely that as population densities increase, then 
the number of buildings in terms of their size might also increase and 
that in an extreme case, we might have one building in each zone. 
What all this implies is that the relation between population (density) 
and the number of buildings is complex. It is likely that population 
would not be housed in identically size buildings which would destroy 
the rank-order in terms of buildings for all would be the same size; but 
that as population increases in density, buildings are likely to be larger 
in geometric terms, reflecting pressure on space and the tendency to 
occupy higher densities of space. In this sense, we might then expect 
that the parameter on the rank-size distributions of buildings would be 
lower than that which we have assumed for population. This of course 
is to be tested and is one of the central issues in this paper. 

Urban Geometry and Allometry 
We have quickly moved from population densities to populations to 
buildings making the point that this translation is nowhere 
straightforward. We will talk this through verbally for the other set of 
relationships we intend to explore here relate to the geometric 
properties of buildings as they co-vary across the entire set. From 
Figure 1, let us consider the population density in different distance 
bands. If everyone occupied the same size of building, then the 
number of buildings would co-vary with the population, and there 
would be a uniform size of buildings everywhere. This would destroy 
the rank order but only at the building scale This is most unlikely 
because as populations agglomerate, then the pressure on space 
increases due to competition – populations wanting more space 
compete with each other, bidding up the rent they will pay for the 
location in question. This competition is essentially due to accessibility 
and to the need for people to agglomerate so that they can realize 
various externalities related to business, trade and exchange as well 
as linkages to efficient production. Thus it is likely that the buildings 
will increase in size as the population increases but not to the point 
where everyone occupies the same building. If we then assume that 
the number of buildings is related to the population size as 

ψ)(~)( rPrB  where the parameter is usually 10 <<ψ , then the 
average size of a building is  

ψ−== 1)(
)(
)()( rP

rB
rPrV  (3) 

In fact the size )(rV  scales with r , being proportional to )1( ψα −−r . 
This is an allometric relationship in its own right but we will not explore 
it further in this paper. It is introduced simply to translate density of 
population to buildings. 
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With the parameter in (3) lying between 0 and 1, then it is quite clear 
that the parameter )1( ψα −  is less than α  and thus the scaling of 
the geometry , in this case building size which we can assume is 
volume, is less than the population scaling. We can plot the population 
and building size rank-orders in logarithmic form (which is called a Zipf 
(1949) Plot after the scholar who popularized the rank-size rule) 
where we assume the rank is based on population in the first instance. 
In Figure 2, we show both these plots where it is clear than when 

2=α  and 5.0=ψ , then the scaling for building size is 
1)1( =−ψα .  

 

 

 

 

 

 

 

 

 

 

 

 

 

In fact, examining building size by the rank that pertains to distance 
from which it is computed, is probably too simple in that with building 
size we have numbers that spread out the rank-orders. If we plot the 
building size against these new ranks where the numbers of buildings 
at each unit distance are accumulated, then we get the third plot in 
Figure 2 which looks much more like a lognormal with an average 
slope that is even smaller in magnitude than other two. There is not 
much point in taking this kind of theoretical analysis further as it is 
simply a matter of playing with functions but it does suggest that 
building size does scale in the same manner as other power law 
functions that determine the number of objects characterizing urban 
size distributions.  

Some empirical evidence for this already exists and is widely available 
for the world’s highest buildings and even a rank-size analysis has 
been done for the top 100 by Choi (2002) which we show in Figure 
3(a) which is reminiscent of Figure 1 although most of these buildings 
are from different cities. To lighten the tone, alongside this, we place 
the top 20 skyscrapers in their original physical form as Figure 3(b). 

 

 

 

 

 

 

Figure 2: 

Log-log rank-size relations 
for population and, building 
size by distance rank and 
building size by numbers of 
building ranks 

Figure 3: 

a) The top 100 buildings by 
height, 
b) The top 14 in their 
physical form 
(From http://i.cnn.net/cnn/ 
interactive/world/0301/gallery.sk
yscrapers/intro.skyscrapers.new
3.gif) 
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In fact, a data base exists on the web for the top 200 buildings 
(skyscrapers) by height (see http://skyscrapers.com/en/bu/sk/st/tp/ 
wo/) and it is easy to perform a log-log regression of the data as we 
show in Figure 4 below. This reveals remarkable consistency in terms 
of rank and size with a slope of -0.158=α  and an adjusted 

correlation 0.9962 =r . As we have argued theoretically, the slope is 
much smaller than 1 although we will return to this value a little later 
when we develop our own empirical work with the London data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What we are also interested in are the geometric features of overall 
building size, how they scale relative to their sizes and how they scale 
relative to one another. In terms of the key geometric features, first 
note that if was consider a building to be a square block, then we start 
with the standard geometric relations where the linear length L  of the 
building first determines the area A  as 2L  and then the volume V  as 

3L  from which it is clear that LAV = . From these, standard 
allometric relations. first proposed by Huxley (1932, 1993), can be 
derived which imply what occurs if the volume, or area or length 
changes relative to each other of these measures. Then for our 
square block (which can be easily generalized to a less uniform 
geometry), 3/2VA = , 2/1AL = , and 3/1VL = . These imply that as 
the volume grows, the area grows at a rate which is 2/3rd’s the rate of 
volume growth. This can easily be seen computing the relative growth 
rate or ratio of AdA /  to VdV /  (assuming a unit of time) which we 
can do as follows 

V
A

V
VV

dV
dA

3
2

3
2

3
2 3/2

1)3/2( === −  (4) 

Rearranging the terms, we can get the ratio – the relative growth of 
AdA /  to VdV /  as 

3
2

=
V
dV

A
dA

 (5)

Figure 4: 

Zipf plot of building height 
versus rank for the World’s 
top 200 skyscrapers 
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which can be easily generalized for any scaling parameter β . The 
general allometric relation relating some physical property y  of an 
object to another x  is thus 

βxGy =  (7) 

where the scaling parameter is the relative growth rate of y  to x   

x
dx

y
dy

=β  (8) 

β  is also the elasticity as defined in economics. Equations (7) and (8) 
can thus be applied to any relationship which might be scaling with 
respect to different measures of size and where these sizes imply 
differential relative growth (Von Bertalanffy, 1973). 

To simplify our treatment, we assume that the entire array of buildings 
can be represented as rectangular blocks. In fact this is the case as 
we will see in our buildings data base where buildings are constructed 
from plot area and modal height and where more complex buildings 
are glued together from simpler rectangular blocks. Then in terms of 
building blocks, linear dimension will involve heights (z) and vector 
lengths in the (x, y) plane from which area of the plot, the surface area 
of the block, and its volume or mass can be computed. We will not 
compute any internal measures of circulation in buildings for this does 
not exist in the databases as yet, nor will we compute any interior 
space as this does not exist either, although the data bases are being 
augmented to deal with such complexities in the future. We thus 
define for each building jB  which is located at a point or centroid 

(toid) j  whose x, y coordinates we have, perimeter of the ground 

level plot jp , average height of the building jh  area of the plot ja , 

surface area of the building js  (which is essentially the plot area at 
the bottom and at the top of the building and the areas of its faces), 
and volume or mass jv . We are interested in their scaling with 
respect to rank-size which we have hypothesized above but we are 
also interested in how they scale with respect to each other. We will 
select from the following ten scaling relations but note that we will not 
present the results for surface areas as these have not yet been 
computed from the database. We will deal with these in a future 
version of the paper. Then 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

=

==

===

====

ζ

ϑξ

χθϕ

μφηκ

jj

jjjj

jjjjjj

jjjjjjjj

vZs

vZasZa

vZhsZhaZh

vZpsZpaZphZp

10

98

765

4321

;

;;

;;;

 (9) 

where the *Z  are the constants of proportionality and the power 
symbols are the appropriate allometric parameters – relative rates of 
change. We will not examine all these other possible relations either 
for all we wish to do at this stage is give some sense as to how these 
quantities vary.  

Our key interest in urban allometry is to find out whether the scaling 
between areas and volumes implies changes in the shape of buildings. 
In terms of the relations in equations (9), we would expect the volume 
to scale as the cube of height and perimeter, and as the square of plot 
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and surface areas. Surface area is likely to scale as the square of 
height and perimeter and linearly with plot area while the same 
relations pertain to plot area. Perimeter and height scale with each 
other linearly and these are the baseline allometries that we might 
expect. However if there are changes of shape, then these will be 
borne out by the parameters once we estimate the equations in (9) 
which we will do using linear regression of their logarithmic forms. In 
fact, it is likely that there will be considerable variation around these 
forms for all buildings. That is why we need to disaggregate the set of 
all buildings into different land use types which should reveal 
differences particularly between buildings in commercial and 
residential use.  

We might also expect that surface area of buildings may scale quite 
differently from the 2/3rd’s ratio that pertains to the standard pure 
allometric equations. This is because the skin of the building is the 
conduit for light and energy and buildings cannot explain their volume 
indefinitely through increasing the floor areas because such areas 
cannot be serviced through natural light and other forms of energy. 
Thus there are limits on shape in this regard. This is why it is likely 
that as buildings increase in size, they expand vertically rather than 
horizontally and these are the kind of deviations from standard 
allometry that we are seeking, although we are not yet able to show 
these results here. Our concern too is to count the number of 
buildings types by land use and to ultimately link these counts and 
their shapes to energy emission in buildings as well as issues 
involving circulation both within and between buildings. 

The Distribution of Geometric Properties in Buildings 
The Buildings Data Base 
The data base we have assembled is based on our 3-D GIS/CAD 
model of London, which we refer to as Virtual London (Batty and 
Hudson-Smith, 2005). This is a digital model of all building blocks 
within about 30 kilometers of the CBD – the City of London or ‘square 
mile’ – which cover the 33 boroughs comprising the Greater London 
Authority (GLA) area. The data set is unique in that it has been 
created automatically from two main sources of data: first the vector 
parcel files that are part of MasterMap (http://www.ordnancesurvey. 
co.uk/oswebsite/products/osmastermap/) from Ordnance Survey 
which codes all land parcels and streets to at least  one meter 
accuracy; and second a data set of buildings heights constructed from 
InfoTerra’s LIDAR data which produces a massive cloud of 3-D x-y-z 
data points which when used in association with the vector parcel data, 
can be used to extrude all buildings. In this data set, there are some 
3,601,389 distinct buildings centroids (or toids as they are called). We 
are currently dealing with all 3.6 million but in future work, we will be 
aggregating toids to ensure that we are dealing with appropriate 
blocks and this becomes critical when land use is to be assigned 
because land use is tagged to street addresses which is a subset of 
all toids.  

To give some idea of the range of this data set, the maximum height 
of any block is 204.06 meters and this is probably the Canary Wharf 
Tower in the London Docklands.  The mean height is 5.76 meters and 
the standard deviation is 3.29 meters which shows that the frequency 
of building heights is very skewed to the left, reflecting the fact that 
this distribution is likely to follow a power law. For illustrative purposes 
only the top 10 blocks by height in London are 204, 197, 169, 160, 
151, 150, 138, 130, 128, and 123 meters in comparison with the top 
10 from the skyscrapers database which are 509, 452, 452, 442, 421, 
415, 391, 384, and 381. London’s highest building is in fact not in the 
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top 200 in the world and from the regression in Figure 4, we can 
estimate its rank as 400. London is not a city of tall buildings!   

From the data set, we are currently working with the perimeter of each 
plot which is computed directly from the MasterMap data, and the 
mean height of a plot which is important as there are many different 
heights from the LIDAR data reflecting complex roof shapes, masts, 
air conditioning units and so on. Other measures of height such as 
median and mode do not change the results below substantially. We 
compute volume simply from taking the area of the plot and 
multiplying it by its height. This does not take account of course of the 
fact that some buildings will taper but currently we are not able to do 
much about this as we do not have elaborate algorithms in place to 
construct intricate roofing shapes. We are able to compute these 
measures – perimeter }{ jp , height }{ jh and volume }{ jv  which we 
will use for the rank-size and allometric analysis which we deal with in 
the following section. 

When it comes to land use, we need to be clear about how we tag a 
land use to each building. From the MasterMap Layer 2, we have land 
uses associated with each street address for which there is a toid. 
However there are many blocks that do not have street addresses and 
these tend to be part of other building complexes and/or are very 
small and somewhat idiosyncratic in their form, such as sheds, lean-
to’s and such-like bric-a-brac. Currently we are at work on an 
algorithm to clean up this data and to produce a much tidier set of 
building blocks and this work will be reported in future papers. What 
we have done here is to classify the land use into nine different land 
uses which we list in terms of toids classified with at least one 
residential, office, retail, services, industrial, educational, hotel, 
transport, and general-commercial land use. We have not yet 
broached the difficult question of multiple land uses, for we have 
simply taken these combined classes. In future work, we will develop 
a much more sensitive classification which takes account of multi-use 
and attempts to make sense of such ambiguities. We think in fact our 
results are robust in any case as the majority of land uses have single 
uses associated with their toids.  

The Distribution of Building Properties: 
Rank-Size Relations 
We start by defining average or mean height, perimeter of the plot, 
and area of the plot, and we then simply determine the volume of 
each building by multiplying area by height. This of course is an 
approximation but until we get better algorithms for interpolating roof 
shapes it needs to suffice. We have computed the ranks of perimeter, 
height, area and volume and we illustrate these for all 3.6m blocks in 
Figure 5 where we note that in this figure, the scaling parameter is 
given as α/1 . We generate the following relations: 432.0

1)( −= rKrpj , 
223.0

2)( −= rKrhj , 684.0

3)( −= rKraj , 799.0

4)( −= rKrvj  where the 
parameters values are less than unity but not inconsistent in terms of 
their relative magnitude. In essence we might expect volume to 
decline more steeply with rank than area, which in turn is likely to fall 
more steeply than height or perimeter for this is the sequence of 
objects from 3 to 2 to 1 dimension. Assuming that 3~)( jj prv , and 

2~)( jj pra , then if we plug these idealized perimeters into the 
expressions for area and volume in the estimated rank-size relations, 
then we do appear to get similar orders to the estimated parameters 
values, that is the values are consistent with one another in terms of 
the assumed geometry. 
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Figures 5(a) to (d) are quit self-explanatory. We have very dramatic 
linearity in the log-log plots over several orders of magnitude for 
volume from 710  to 210  after which the plot falls very steeply, 
implying that buildings less than 100 sq meters in volume behave 
quite differently. These are really sheds and bric-a-brac referred to 
earlier and in future work will be discounted to an extent as we 
construct better building blocks (Steadman et al., 2000). In fact we 
show a sample of this kind of detail in Figure 6 where the thick red 
lined blocks are in fact not addressed as land uses in the data and 
can be assumed to be part of other buildings or free standing sheds 
which should not be considered in the same manner as the rest of the 
buildings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same steep fall in slope for volume at the highest ranks occurs for 
the other plots as well. For area, the rank-size is linear from 510  to 

210 , for perimeter from 410  to 110 , and for height from 210  to 110  
which means that in general the building heights in this data set are 

Figure 5: 

Rank size relations of 
volume, area, perimeter and 
height 

Figure 6: 

Buildings and freestanding 
structures of small size not 
‘addressed’ by toid in the 
land use data base 
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less than 100 meters. As we know the tallest building in London at 
Canary Wharf is just over 200 meters tall. These regressions are 
striking in their linearity and such rank-size relations are amongst the 
best we have come across. In fact this bears out the remarkable 
linearity of the rank-size of the heights of the top 200 buildings in the 
world which enabled us to make such good predictions of building 
heights further down the scale. In away all this is preamble to the 
central issues of allometry that we will now examine first for the 
aggregate building set. 

The Allometry of Buildings 
Relations between Perimeter, Area and Volume 
We will not estimate the relation between height and area or volume 
but instead use perimeter; volume is constructed from area and height 
and height is thus redundant as an independent measure although in 
future work it will still be considered when we refine the data set. We 
can restate our allometric relations between area and perimeter, 
volume and perimeter, and then volume and area as follows, and by 
the side of these we show the estimated relations from the data set 

⎪
⎪
⎭

⎪⎪
⎬

⎫

296.12/3

386.23

833.12

~~

~~

~;~

jjjj

jjjj

jjjj

avav

pvpv

papa

 (10) 

It is immediately clear that the order of the parameters matches the 
order of the geometric scaling. That is, the parameter of area on 
perimeter is less the square while the value of the relation between 
volume and area is less than 3/2. This means that as the perimeter 
increases, the area increases less than the normal geometric relation 
implying that shape should change and probably become more 
crennelated – implying a longer perimeter – as the area grows. In 
terms of volume, this increases at less than 3/2 of the area which 
suggests that the volume must get proportionately less as the area 
grows. This bears out the implied observation that as the surface 
grows the shape must change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We show these relations in Figure 7 where it is immediately clear the 
trend is rather firm but the scatter is also substantial. We have not 

Figure 7: 

The key allometric relations 
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computed the correlations – we will do so in later work – but it is clear 
that these relations are strong. A word of explanation is in order, 
These graphs contain 3.6m points and are very dense clusters that 
would best be described by contour surfaces showing their density 
and this we will do in future work. We have also systematically looked 
at height versus perimeter, area and volume, and these correlations 
together with those in Figure 7, albeit at a smaller scale are shown in 
Figure 8. This shows that the relationships between height and the 
other variables are much more scattered and do not show much trend. 
This is to be expected as height is the variable in the London 
database that is the most variable and does not seem to relate very 
strongly to the standard allometric relations. This requires 
considerable further research as it is central to some of the notions in 
this paper which relate to how volume scales with plot area and to 
questions of surface area of buildings that define their skin which we 
are going to develop in the next stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disaggregating to Land Uses 
The next step is to tag the buildings data with land use and this is 
where some of the problems identified earlier with freestanding small 
blocks are at their worst. Land use is available in MasterMap Layer 2 
with some hundreds of categories but these are tagged to street 
address. Each street address is a toid which marks a plot or building 
but all toids do not have street addresses. In Figure 6, the blocks in 
red do not have a street address and thus these are excluded  from 
our first analysis of the land use data. Moreover the land use data 
varies considerably across the city from areas which are very mixed to 
those which are uniform. To give the reader some sense of the variety 
in this data, in Figure 9 we show four pictures of such use. In Figure 

Figure 8: 

Exploring the complete set of 
relations 
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9(a), we show the London Docklands at Canary Wharf which is 
London’s second CBD but also contains considerable low rise housing. 
There is massive variation in building size and geometry here in 
contrast to Figure 9(b) which is Barking in East London which is 
mainly residential and quite uniform at two storeys. In Figure 9(c), we 
show the land uses in Canary Wharf aggregated to similar categories 
to those we are using here and this shows the variety again but also 
shows that commercial tend to be in larger, higher blocks than 
residential. Figure 9(d) is an area around the South Bank and 
Waterloo which has very different shaped buildings characteristic of 
transport and office uses mixed with some residential and retail. 

All we have done so far is to explore the distribution of buildings 
tagged to our nine land use categories – residential, office, retail, 
services, industrial, educational, hotel, transport, and general-
commercial in terms of their rank-size of height and area. We have not 
computed volume from area times (x) height in this data set as yet. 
What we find is that there is very little difference between each land 
use. We show the Zipf Plots of these two sets of relations for the nine 
land uses in Figure 10. Because the range of these data vary 
considerably, we have in fact collapsed them onto the same scale for 
each land use by plotting the ratio of the size to its mean against the 
ratio of the rank to its mean and this enables us to see how close 
each land use distribution is to any of the others. What we find is that 
height scales as 243.0

2)( −= rKrhj , and 593.0
3)( −= rKra j  for all land 

uses – or for the average of all the merged data, and these values are 
quite close to the overall scaling for all buildings. The distributions 
again show the steep fall at a similar point in the distributions and 
strong linearity over the rest of the plots. Again there is clear evidence 
of scaling over several orders of magnitude. There is much work to do 
on these data and the next step is to explore their allometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: 

Variation in buildings sizes 
and land use visualized from 
the database 
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Scaling and Street Systems 
We will conclude this first foray into the geometry of buildings in large 
cities with a move from volumes and areas to linear features in the 
form of street systems. Carvalho and Penn (2004) found strong 
scaling in axial lines from various databases produced using space 
syntax analysis but left the key question remaining as to whether 
street segment lengths actually scale for definitions based on more 
mundane considerations defined by street intersections. Axial lines 
are lines of sight or uninterrupted movement and are not the same as 
those which are defined by building street networks from the bottom 
up, Ordnance Survey for example in their ITN (transport) layer of 
MasterMap build streets from center lines which are usually defined 
between street intersections or at least points where streets converge 
on one another in some way. In the London data, there are 64753 
street segments that exclude alleys and lanes which range from about 
1 meter in length up to 3773 meters at maximum. When we examine 
the size distribution of these street segment length, we find that there 
is scaling of a sort but that it is nearer to log normality in the 
distribution. We show the rank-size relation in Figure 11 for the first 
32000 segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: 

Rank size distributions for 
nine land use categories 
collapsed onto a common 
scale 
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What we have not yet done is demonstrate how scaling in buildings 
relates to scaling in street systems and to do this, we must establish a 
much clearer link between how the geometry of buildings generates 
street systems and vice versa. This should be possible to some extent 
but the geometry of streets is much more arbitrary than the geometry 
of buildings. Where a street begins and ends is always a problem 
which is faced in space syntax, for example, and although there is 
more common agreement about street segments being defined by 
intersections, this too is rather an arbitrary feature of the analysis. 
There is thus an urgent need for buildings, land uses and street 
systems to be considered together and this would also involve non-
built up areas of open space.  

Conclusions and Next Steps 
We are clearly in the midst of researching this area. Besides 
developing the analysis of existing data sets in a much fuller manner, 
exploring the allometry of buildings associated with different land uses, 
for example, we need to revisit the data base in considerable detail 
and iron out many of the problems of building size and type that we 
have identified here. We also need to extend the analysis to deal with 
different rank-size and allometric relations in different parts of the city, 
showing how these relations will change for different kinds of areas, 
for example as we implied in the pictures of different parts of London 
in Figure 9. In short we need to ground the analysis in terms of its 
spatial and geographic context. 

We are much encouraged by the very strong scaling implicit in this 
data and of course to confirm this we need more example from other 
cities. We need to relate the physical geometry to other measures, 
particularly linear measures such as utilities and street systems as 
well as socio-economic activity volumes as proposed by Kuhnert, 
Helbing, and West (2006) and Bettencourt, Lobo, Helbing, Kuhnert, 
and West (2007). We need to link the analysis much more strongly to 
fractal geometry and we need to link it to circulation patterns in 
buildings (Bon, 1973; Steadman, 2006). In particular the most urgent 
extension which we are about to do is to examine the surface areas of 
buildings and to link these to energy emissions and related 
phenomena and when we do this, the variations in these relations with 
respect to different locations and districts within the city will take on 
new meaning. In time, we hope that such work will add to our growing 

Figure 11: 

Rank size distribution of 
street segment lengths in 
greater London 
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knowledge of how efficient cities are in terms of their geometry and in 
this sense, provide a much more considered position on issues such 
as urban sprawl and the compact city. 
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